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Modal Analysis of a Planar Dielectric Strip Waveguide

for Millimeter-Wave Integrated Circuits

T. T. FONG, MEMBER, IEEE, AND SHUNG-WU LEE, MEMBER, IEEE

Absfracf—A novel planar waveguide which is suitable for guiding

electromagnetic (EM) energy in the millimeter-wave and submilli-
meter-wave regions is studied. By using Wiener-Hopf techniques,
we first determine the reflection coefficient at the open ends of the
guide. Next, a transverse resonance condition is applied to determine
the dispersion relation of the modal field. The propagation constant
is found to be complex. Its imaginary part accounts for the edge
diffraction loss of the strip through the open ends of the guide.
Extensive numerical results are given for the disperson charac-
teristics and modal field distributions for sificon and fuzed quartz
substrates. The planar strip waveguide should have the advantages
of simplicity in processing, a lower random diffraction loss, and
accessibility to monolithic integration techniques.

I. INTRODUCTION

RECENT rapid advances in millimeter-wave active

and passive solid-state devices have made feasible

many system applications. In order to develop a functional

module for a particular system application and to reduce

the size and weight of the module, an integrated circuit

approach is of considerable interest. The use of a dielectric

waveguide and its associated components has recently

been explored in the millimeter wavelength region [1] and

some encouraging results have been reported. However,

the dielectric waveguide must be fabricated by chemical

etching or machining, and suffers from undesirable dif-

fraction loss and phase distortion due to random wave-

guide variation introduced in the fabrication process. In
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this paper we study the possibility of using a planar

dielectric strip waveguide which does not have the pre-

ceding fabrication difficulties. As shown in Fig. 1, the

geometry of the strip guide is identical to a microstrip

transmission line [2]–[5] which has been widely used at

microwave frequencies. Unlike the microstrip, however,

the transverse dimensions of the strip guide are relatively

large compared to the wavelength and therefore the guide

no longer supports the TEM or quasi-TEM mode of

propagation characterized by a zero cutoff frequency

[2]-[5]. Consequently, despite the geometrical similarity,

the modal fields of a strip guide are completely different

from those of a microstrip.

It is to be stressed that the substrate thickness for a

dielectric strip guide is considerably greater than for a

conventional microstrip. Typically, the thickness is ten

to fifteen times greater so that dominating TEM or quasi-

TEM modes in the microstrip are no longer supported in

the strip guide. This results from strong radiation caused

by the large substrate thickness. The only modes that can

still propagate in the dielectric strip guide are similar to

those described by Vainshtein [6], for which the propaga-

tion constants in the transverse x direction are small and

the waves undergo strong reflections at the open ends.

The energy is thus trapped in the waveguide and does not

radiate into the free space. Therefore, the strip guide

described in this paper is entirely different from the wide

microstrip configurations such as the microguide [7] or

the edge mode microstrip described by Hines [8]. The

greater substrate thickness is advantageous at millimeter

and submillimeter wavelengths because of ease in fabrica-

tion.
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Fig. 1. Cross sectiou of a dielectric strip guide.

Our method of analysis follows the one first introduced

by Vainshtein for laser resonators [6], [9]. If the open

structure in Fig. 1 is to sustain a well-defined modal field,

the energy loss through the open ends at x = &a must be

small. It has been shown [9]–[11 ] that this is possible

only when the propagation constant along the x direction

is small compared with that along the y direction, and the

reflection coefficient at x = &a is only slightly less than

one. Under such a condition, we can greatly simplify the

expression for the reflection coefficient at x = &a obtained

by the Wiener–Hopf technique, and subsequently derive a

simple dispersion relation.

II. MODAL FIELD OF TM(U)

The cross section of the dielectric strip guide, to be

analyzed in this paper, is shown in Fig. 1. It consists of a

conducting strip placed on an infinite dielectric substrate

backed by a perfectly conducting material. To study the

modal fields guided along the z dhection, it is convenient

to classify the fields in two types: TM(vJ and TE@J with

respect to y, a transverse direction. For TM(?), all the field

components are derivable from a scalar potential 4 [with

exp ( – id) time convention suppressed]:

i a2*
E.=–—

we dy &

R=:*
z

(3X
(1)

where k, = u (Pe,) 1/2 = 27r/ho is the wavenumber in free

space. In thk and the next section, we shall concentrate

on the study of TM@J modes.

First let us consider a special case with a -+ ~ (Fig. 1),

which results in a conventional parallel plate waveguide

filled with a dielectric medium c,. Then the potential for
TM~~(z/) mode assumes the familiar form:

()IJmn = exp (iamx) cos ‘~ y exp (+%z) (2)

where ~~, and ~~. are, respectively, the propagation con-

stants along the x and z directions; they satisfy the dis-

persion relation

()mr 2
%2 + —

b
+ fimnz = k,%’. (3)

For a finite a, instead of a traveling wave, there should be

a standing wave along the x direction, namely

~m = [exp (iamx) + Rmfl exp (i2ama) exp (– ia~~) 1

. cos ~ y exp (i&z) (4)

where Rm. may be identified as the reflection coefficient

at the open ends x = &a, and will be studied in the next

section. To sustain a modal solution in the present open

structure, the well-known transverse resonance condition

requires [6]

R~. exp (i2a~a) = exp [i(wa + 1) r], WL = 1,2,3, . . . .

(5)

Alternatively, it maybe written as

[ 1a.= ~+i&ln(–R.n) . (6)

Using (5) in (4), we obtain the formal solution for TMti.

mode in the structure shown in Fig. 1:

H

Cos C%x
rw

m = 1,3,5 . . .

+mn = cos — y exp (ibn.z),

sin CYmX
b

m = 2,4,6 . . . .

(7)

where the multiplication constants have been omitted.

Thus, for a given guide dimension (ajb) and dielectric

constant c., the propagation constant fl~fi can be deter-

mined from (3) and (6) once R~. is known.

III. DISPERSION RELATION OF TM@)

For the geometry depicted in Fig. 1, it does not appear

that the reflection coefficient Rm. at junction x = &a

lends itself to a closed form solution. In the following we

shall introduce two approximations.

1) We shall neglect the coupling between the two open

ends at x = ~a. Thk is valid when 2a is large in terms of

the transverse wavenumber, i.e.,

2kOa I [e, – (~/ko) 2]1/2 I >>1.

Under thk approximation, for the purpose of determining

R~. at x = a, the problem in Fig., 1 can be replaced by

that in Fig. 2, namely, a semi-infinite strip extended from

x = O to x = — cc. It can be shown that TM@J and TE@)

are coupled and therefore it is a three-dimensional vector

field problem. To facilitate the application of the WierLer–

Hopf technique to obtain an analytic solution, we shall

introduce another approximation.

2) In matching the tangential fields at the interface

y = b (Fig. 2), only the conditions on (E., H.) will be
enforced while those on (-E*,H.) will be neglected. This

approximation is reasonable because for TM@ mode, the

dominant components are (E,, E., and Hz), while (E.,JW.)

being proportional to am are small.

With the approximations stated in 1) and 2), we have

equivalently a two-dimensional scalar problem at hand.
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x

Fig. 2. Parallel plate waveguide fordetermining R~~.

The solution of the reflection coefficient A& can be found

by the Wiener–Hopf technique. Since the detailed analysis

of a similar problem has been presented elsewhere [9], [10]

we shall only give the final result as follows:

R m. = [am+ (ko’cr – AW?2) ‘/2]2 ‘::a’m) .
m

In standard Wiener–Hopf notation, G+(a)

part” of a Wiener–Hopf kernel G(a), which

G(a) =
r

@(r + C,Ycoth r%)

where

(8)

is the “plus

is given by

(9)

r = + [d – (ko’e, – &.2) ]1/’

—— —i[ (h%. —/3mn2) — ay ( 10)

T = + [C12– (Ic02– Pm.’) ]IIZ

– —‘i[(ko’ — /3mn’) — a’y’.— (11)

A direct use of (9) will lead to a result which is too

complicated to be useful. Thus, in the following, we shall

seek a simplified form of (9) with the appropriate approxi-

mations.

In order to support a propagating mode in the structure

in Fig. 1 with small loss (Im ~~fi << 1) it is necessary that

the reflection coefficient Rm. has a magnitude close to

unity. It has been shown by Vainshtein [6] and Bates [1 1]

that this is possible only when I am 12<< (rim/b) 2. In view

of this and (3), it is convenient to introduce a parameter

Pm such that

[k,’e, – flmn2]112b = r(n + Pm). (12)

Thus, instead of dealing with am, we shall work with Pm,

a complex number with magnitude I P. I <<1, and

(-)2Pm 1J2

(~o’e, :;mn’) 1/’= ~
<<1. (13)

Realizing the fact that a = am is used for the calculation

of Rmn in (8), we invoke the following approximations for

I’ and -y defined in (10) and (11):

[
r = – i(k1126r — @m.2) 1/2 1 –

a?
2 (ko%r – @m.’)1 (14)

‘y m — i(ko’ —@inn’) m. (15)

Then the Wiener–Hopf kernel G (a) in (9) becomes

{/[
G(a) x i (ill)’ – (L.’) 1/’

(-b l+G
(klJ’ – pmnz)11’)1}M(a,l)

(We. – @mnZ)‘/’
— (16)
M(a,c) “

In the preceding, we have used the notation

{
M (q) = 1 – c exp i2(?CO2C, – @m.’) 11’

[
.bl–

a’

2 (?co%,– ,&nz) 1}(17)

where

1 – G[ (kob/nm) ‘ ( 1 – G) + 1]1/’

c = 1 + e,[(kOb/nm_)a(l – c.) + l]IIz “
(18)

The factorization of M (a, 1) was discussed by Vainshtein

[6] and M (cr,c) by the authors [9]. The results are

M+(cx~,l) = (87rP~) ‘/2 exp [–0.824(1 – i) (Tpm) 1/’]

(19)

[ 1M+(am,c) % (1 – c)l/2 exp (1 – i) (Pm) ’/2 >1-$ .

(20)

Formulas in (19) and (20) are excellent approximations

for real c <1 and Pm <0.25. A detailed discussion on the

accuracy of these formulas was given in [9]. However, in

the present analysis, we are also interested in situations

where c is complex and I c I ~ 1. In such cases, the series

in (20) converges slowly. For numerical calculation, a

better representation of M+(am,c) is given by an integral

over a steepest descent path [9], namely,

in M+ (am,c)

1

-/

m h { 1 – c exp [i27rP~ – (t2/2) ])

= 27r’i _m t – am(b/ko) 112exp (i7r/4)
dt. (21)

Substituting (13)–(20) and (21) into (8), after simpl&

cation, we obtain the desired expression for the reflection

coefficient for the TM~n@J mode:

R ~~ = (– 1) exp [i(47rPm) ‘/2(1 + i)0.824go]. (22)

Here we have two expressions for go. For real c < 1, we use

go=l+ 1 ~g
O.824(Tr) 112,=1 qll’ “

For complex c, we use

(23)

(24)

where
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/

M in {1 – exp [i27rP~ + in [c/ (1 – c) ‘f’] – t2/2]) ~t
U(C,P.) = &. _

w t– (4TPm) 1/2exp (ire/4)
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The formula in (22) is valid under the assumptions 1) and

2). For the special case where the dielectric is absent

(e, = 1), g, reduces to unity. Thus g, may be considered

the filling factor accounting for the dielectric loading.

With the reflection coefficient R~~ found in the preceding,

and with the aid of the dkpersion relation given in (3)

and (6), Pm may be written as

Pm =
mnz

4[(2m) 1/2(a/b) + (1 + i) O.824go]’ “
(25)

For given waveguide parameters (koa,kob,e,) and given

mode index (m,n), we may calculate the complex number

Pm from (25). It should be noted that for real c < 1,

go given in (23) is independent of Pm, and (2.5) determines
Pm explicitly. For complex c, go is a function of P~, and

Pm must be solved by iteration. The propagation constants

(a@fi~) along (x,z) directions follow from (12) and (13)
or equivalently

am—=
/to f~ [p~(zn + pm) y12

(26)

5=[’+LPV” ’27)
where pn~ is a complex number, and its small positive

imaginary part accounts for the radiation 10SSat the open

ends x = ~a,

IV. RESULTS FOR TE@J

The analysis of TEf~) modes follows exactly the same

procedures as those for TM@J modes presented in Sections

II and III. In the following, we shall only summarize the

final results. The field components of TE@j are derivable

from scalar potential ~ as follows:

Eg=O
‘~=a$+ko’’r)$

For the TE~,,@) mode, ~ takes the form of

‘1 1

Cos timz

L. = sin ~ y exp (if?~~)
sin a~z

(28)

m = 1,3,5 . . .

m = 2,476. . . .

(29)

The propagation constants (a~,~~fi) again can be computed

from (23) -(26), except that c should be replaced by t, and

[(~Ob/nr)2(l – c,) + 1]’1’ – I

5 = [(kOb/n7r)2(l – e,) + 1]’12 + 1 “
(30)

Since Z% is small, the dominant components of the TE@J

mode are (EX,HU,H,).

V. NUMERICAL RESULTS AND DISCUSSION

In numerical calculations, the complex constants Pm
are solved from (2.5) by means of iteration as described

in the following. Using an initial value of go generated by

(23), a first order Pm is calculated from (25), andl an

improved go from (24). Substitute the improved gO in

(25), we have a second order Pm. The procedure repeats

until the variation of Pm becomes less than a preset error

criterion. Typically, thk procedure yields a variation in

Pm within 0.1 percent by only two to six iterations.
In Figs. 3(a) –6 (a), the calculated propagation constant

Re p~n from (27) is plotted as functions of blho for four

lowest order TM~.fvJ and TE~n(YJ modes with aspect ratio

(a/b) = 1 and 2, for c, = 11.8 (high resistivity silicon)

and c, = 3.78 (fuzed quartz). It is observed that the strip

guide analyzed in the present paper has dispersion ch.wac-

teristics very similar to those of the dielectric guide [,12],

[13].

1) The separation between modes decreases as the

aspect ratio (a/b ) or dielectric constant c, increases.

2) TMnn[~J and TE~n@J have practically the same prop-

agation constants Re p~~. The reason that the presence

of the dielectric loading in our study does not remove this

degeneracy is because, for the transverse resonance condi-

tion to satisfy, Pm has to be small, meaning that the

incident plane wave, the first term of (4) at y = b in

Fig. 1, is nearly perpendicular to the dielectric interface

(i.e., normal incidence). In which case, it is known that

the refraction at the dielectric interface is independent of

polarization.

A striking difference between the present analysis and

those for optical and microwave open guides is that we

are able to calculate the attenuation constant Im ,tk.

For an open structure shown in Fig. 1, even under ideal

conditions (1OSS1WSdielectric and conductor), the EM

energy cannot be confined perfectly due to the radiation

loss caused by diffraction at (z = +a,y = b). This loss

is reflected in the positive imaginary part of ~~~. We have

calculated’ Im ~~n from (27) and the results are given in
Figs. 3 (b) -6 (b). The following observations can be made.

1.) The radiation loss decreases as the aspect ratio (a/b)

c, increases.

2) The radiation loss increases as Re Pm. decreases. At
Re ,&n = kO, the major portion of the modal energy is no

longer confined in the waveguide and the radiation loss

increases sharply. “

3) The lowest radiation loss is associated with the mode

which has the smallest transverse propagation constant
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am [6], [11]. As b/AO increases, the smaller am come from

modes with higher indices. Consequently, the attenuation

constant of a lower indexed mode may cross over that of

a higher index.

4) Figs: 5 (b) and 6(b) also manifest the competing

effects of dielectric loading and edge diffraction. For wave-

guides with relatively high dielectric constants, the modal

fields are quite confined due to the dielectric loading and

the edge diffraction is less predominant. However, as the

dielectric constant decreases, the edge diffraction becomes

the predominating mechanism responsible for radiation

loss. Thus, for certain modes, such as the TMI,ZCVJ mode,

the diffraction loss is at a minimum for n = 2 at b/kO =

0.6 [Figs. 5(b) and 6(b) ] because of am x O, and the

lowest diffraction loss is associated with the mode just

slightly above cutoff. Either below or above this b/kO, the

loss increases owing to the critical diffraction at the open

ends.

It should also be mentioned that in computing the

propagation constants and attenuation constants for lcom

bmn j the approximation as defined by (15) is no longer

valid. Instead, one should use

y ~ – i[k02 – ~mnz – (r/b) 22nP~]112. (31)

Consequently,

1 – c,Q
c(Pm) = — for TMM.@) modes

l+e,Q’
(32)

where

Q = [(kOb/nm)2(l – G.) + 1 – 2PJ11’.

Therefore, for lCOw ~~n, both c and c become functions of

Pm, and go can only be obtained by iteration as previously

described.

Transverse field distribution for different modes may be

calculated from (1) and (2) for TM(Y) and (29) for TE(uJ.

Such distributions along the x direction are presented in

Figs. 7-10 for TM(vJ modes. Field distributions for TE@)

modes are not shown because they are similar to the TM(Y)

modes owing to the degeneracy in Re ~~.. It is seen that the

field distributions in the strip guide are similar to those of

laser resonators [6], [9]. The nonzero value of the field at
z = A a k related to the radiation loss, the higher the

field value generally results a higher radiation loss. This

observation may be verified, for example, by comparing

Fig. 8 (I ~(a) I m 0.29, Im f?ll x 7 X 10-’ko for a/b = 1)

and Fig. 10 (] ~(a) I = 0.43, Im 1311m 10–2k0 for a/b = 1).
In addition to the diffraction loss discussed above,

another dominant loss mechanism comes from the finite

conductivity of the guide walls. To obtain a first order

approximation of the latter loss, let us assume that the

conductivity of the guide walls is sufficiently high at the

frequency range of interest. Thus the field distributions

are not significantly altered by the presence of the ohmic

loss. In which case, the complex propagation constant due

to ohmic loss can be written as

10

08

06

>

04
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0

Fig. 7. Field
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Vb. lo

MODE INDEX (2,1)

1000

20”

0

0 02 0.4 06 0,8 1.0

x.

Fig. 8. Field distribution along z dkection: ~(z) = sin a,x for
TM,,(v) ; ,, = 11.8, b/kO = 0.5.

(34)

where

@=#EXH*.dS

R, = (wpO/2u) 112 is the surface resistance due to finite

conductivity y of the metallic strip and ground plane. Ht~n,

in a first order approximation, are set equal to the non-

dissipative magnetic field components tangential to the

guide periphery. The line integral with respect to dl ex-

tends over the metallic guide periphery and the surface

integral extends over the transverse waveguide cross sec-

tion. Following from (1), (7), (28), and (29), after sim-

plification one obtains the following for TM~ntff) modes:
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.

1.0 w’ numerical example, let us consider the case with c, = 11.,8,

b/Ao = 0.3, and a/b = 2.0. From Fig. 3, we have &~/kO =

2.98 + i3.94 X 10-3. If we choose a frequency of 60 GHz
08 & and the metal to be copper with u = 4.0 X 109 mho/cm,

~

the surface resistance is R, = 7.7 X 10-2 Q and @Oh~iO=

,,b=2.0 1.09 X 10–2 Np/cm. If this is compared with the radiation
0.6 30” loss Im fl~n = 3.94 X 10-3k0 = 4.95 X 10-2 Np/cm, we

02

0

., =3,8

bio=0.5
MowINQEX (1,1)

T00

“o

o
.

02 04 06 08 10

“la

.
conclude, for this case, the dominant loss factor is from

radiation with the conduction loss Amounts to about 20

percent of the radiation loss. The high radiation loss may

provide a plausible explanation of the fact that the meas-

ured guided wavelength for dielectric waveguide at 1ow

aspect ratio does not agree with existing theoretical

predictions’ [14].

VI. CONCLUSION

A planar dielectric strip waveguide operating at milli-

Fkz. 9. Field distribution along z direction: f(x) = cos oxz for meter-wave has dispersion characteristics similar to those

of a dielectric waveguide, but the strip waveguide is more

easily fabricated and integrated with other components.
1000 The radiation loss at the open ends of the guide dominates

over the conduction loss for copper walls, and therefore is

aib=>o an important factor in the design of a strip guide. Though
m“ the discussion in this paper has been focused on the milli-

meter-wave, we believe the strip waveguide can also be

used at optical frequencies. Proper metallization similar to
SOo that used in an optical mirror, however, maybe necessary

; to mintilze the conduction loss.:
<e
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