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Modal Analysis of a Planar Dielectric Strip W aveguide
for Millimeter-Wave Integrated Gircuits

T. T. FONG, mEMBER, IEEE, AND SHUNG-WU LEE, MEMBER, IEEE

Abstract—A novel planar waveguide which is suitable for guiding
electromagnetic (EM) energy in the millimeter-wave and submilli-
meter-wave regions is studied. By using Wiener—Hopf techniques,
we first determine the reflection coefficient at the open ends of the
guide. Next, a transverse resonance condition is applied to determine
the dispersion relation of the modal field. The propagation constant
is found to be complex. Its imaginary part accounts for the edge
diffraction loss of the strip through the open ends of the guide.
Extensive numerical results are given for the disperson charac-
teristics and modal field distributions for silicon and fuzed quartz
substrates. The planar strip waveguide should have the advantages
of simplicity in processing, a lower random diffraction loss, and
accessibility to monolithic integration techniques.

I. INTRODUCTION

ECENT rapid advances in millimeter-wave active
and passive solid-state devices have made feasible
many system applications. In order to develop a functional
module for a particular system application and to reduce
the size and weight of the module, an integrated circuit
approach is of considerable interest. The use of a dielectric
waveguide and its associated components has recently
been explored in the millimeter wavelength region [17] and
some encouraging results have been reported. However,
the dielectric waveguide must be fabricated by chemical
etching or machining, and suffers from undesirable dif-
fraction loss and phase distortion due to random wave-
guide variation introduced in the fabrication process. In
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this paper we study the possibility of using a planar
dielectric strip waveguide which does not have the pre-
ceding fabrication difficulties. As shown in Fig. 1, the
geometry of the strip guide is identical to a microstrip
transmission line [27]-[5] which has been widely used at
microwave frequencies. Unlike the microstrip, however,
the transverse dimensions of the strip guide are relatively
large compared to the wavelength and therefore the guide
no longer supports the TEM or quasi-TEM mode of
propagation characterized by a zero cutoff frequency
[21-[5]. Consequently, despite the geometrical similarity,
the modal fields of a strip guide are completely different
from those of a microstrip.

It is to be stressed that the substrate thickness for a
dielectric strip guide is considerably greater than for a
conventional microstrip. Typically, the thickness is ten
to fifteen times greater so that dominating TEM or quasi-
TEM modes in the microstrip are no longer supported in
the strip guide. This results from strong radiation caused
by the large substrate thickness. The only modes that can
still propagate in the dielectric strip guide are similar to
those described by Vainshtein [ 6], for which the propaga-
tion constants in the transverse x direction are small and
the waves undergo strong reflections at the open ends.
The energy is thus trapped in the waveguide and does not
radiate into the free space. Therefore, the strip guide
described in this paper is entirely different from the wide
microstrip configurations such as the microguide [7] or
the edge mode microstrip described by Hines [8]. The
greater substrate thickness is advantageous at millimeter
and submillimeter wavelengths because of ease in fabrica-
tion.
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Cross section of a dielectric strip guide.
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Our method of analysis follows the one first introduced
by Vainshtein for laser resonators [6], [9]. If the open
structure in Fig. 1 is to sustain a well-defined modal field,
the energy loss through the open ends at * = 4-a must be
small. It has been shown [9]-[11] that this is possible
only when the propagation constant along the z direction
is small compared with that along the y direction, and the
reflection coeflicient at * = za is only slightly less than
one. Under such a condition, we can greatly simplify the
expression for the reflection coefficient at x = a obtained
by the Wiener-Hopf technique, and subsequently derive a
simple dispersion relation.

II. MODAL FIELD OF TM®

The cross section of the dielectric strip guide, to be
analyzed in this paper, is shown in Fig. 1. It consists of a
condueting strip placed on an infinite dielectric substrate
backed by a perfectly conducting material. To study the
modal fields guided along the z direction, it is convenient
to classify the fields in two types: TM® and TE® with
respect to y,-a transverse direction. For TM®, all the field
components are derivable from a scalar potential ¢ [with
exp (—1iwt) time convention suppressed]:

™w: 7, =~ ¥ =¥
we 0T 0y az
L /o
E, = —"—(— + kozer);b H,=0
we \9y?
y 2.
E, = L% H, = il (1)
we Iy 92 or

where ky = w(ue) V2 = 27/Xp is the wavenumber in free
space. In this and the next section, we shall concentrate
on the study of TM® modes.

First let us consider a special case with a — « (Fig. 1),
which results in a conventional parallel plate waveguide
filled with a dielectric medium e.. Then the potential for
TM.,..*’ mode assumes the familiar form:

n .
Ymn = exp (famx) cos (—675 y) exp (iBmnz) (2)
where a,,, and B,., are, respectively, the propagation con-

stants along the z and z directions; they satisfy the dis-
persion relation

2
am2 + (%) + ﬁmn2 = k02€r- (3)
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For a finite a, instead of a traveling wave, there should be
a standing wave along the x direction, namely

Ymn = [€xp (tam) + Rumn €xp (2ama) exp (—ianz) |
- COS %7[ Yy exp (Bmnz) (4

where R... may be identified as the reflection coefficient
at the open ends x = 4a, and will be studied in the next
section. To sustain a modal solution in the present open
structure, the well-known transverse resonance condition
requires [6]

R exp (2ame) = exp [Z(m + 7], m =123,
(5)
Alternatively, it may be written as
mr .1
am—[%+7/2_aln(—Rmn):l- (6)

Using (5) in (4), we obtain the formal solution for TM,,,
mode in the structure shown in Fig. 1:

COS and m=135--
nr .
Ymn = COS = Y eXp (1Bmn2),
Sin am? m = 2,4,6---
(7

where the multiplication constants have been omitted.
Thus, for a given guide dimension (a,b) and dielectric
constant e, the propagation constant B.. can be deter-
mined from (3) and (6) once R, is known.

III. DISPERSION RELATION OF TM®

For the geometry depicted in Fig. 1, it does not appear
that the reflection coefficient R.. at junction z = +a
lends itself to a closed form solution. In the following we
shall introduce two approximations.

1) We shall neglect the coupling between the two open
ends at r = a. This is valid when 2q is large in terms of
the transverse wavenumber, i.e.,

2koa | Ler — (B/ko)* P2 | > 1.

Under this approximation, for the purpose of determining
R.. at ¢ = a, the problem in Fig. 1 can be replaced by
that in Fig. 2, namely, a semi-infinite strip extended from
2z =0tox = — . It can be shown that TM® and TE®
are coupled and therefore it is a three-dimensional vector
field problem. To facilitate the application of the Wierner—
Hopf technique to obtain an analytic solution, we shall
introduce another approximation.

2) In matching the tangential fields at the interface
y = b (Fig. 2), only the conditions on (E.H,) will be
enforced while those on (E.,H,) will be neglected. This
approximation is reasonable because for TM® mode, the
dominant components are (E,, E,, and H,), while (E.,H.)
being proportional to a. are small.

With the approximations stated in 1) and 2), we have
equivalently a two-dimensional scalar problem at hand.
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Fig. 2. Parallel plate waveguide for determining B,».

The solution of the reflection coefficient R, can be found
by the Wiener-Hopf technique. Since the detailed analysis
of a similar problem has been presented elsewhere [97, [10]
we shall only give the final result as follows:

G (am)

20,2

Rmn = [am + (k()zer - ﬁm’nz) 1/2]2 (8)

In standard Wiener-Hopf notation, G4 (a) is the “plus
part” of a Wiener—Hopf kernel G(«), which is given by

T

Gla) = ¥b(T + ey coth TD) )
where
I = +[a — (ke — Bu?) I
= —i[(ki’er — Bmn®) — 212 (10)
v = +[at = (o = Bt I
= =il (k’ — Bm?) — o?2 (11)

A direct use of (9) will lead to a result which is too
complicated to be useful. Thus, in the following, we shall
seek a simplified form of (9) with the appropriate approxi-
mations.

In order to support a propagating mode in the structure
in Fig. 1 with small loss (Im B, < 1) it is necessary that
the reflection coefficient R.. has a magnitude close to
unity. It has been shown by Vainshtein [6] and Bates [11]
that this is possible only when | am |* < (n#/b)% In view
of this and (3), it is convenient to introduce a parameter
P, such that

[:kozér - 6mn2:|1/2b = T(n + Pm)-

Thus, instead of dealing with o, we shall work with P,
a complex number with magnitude | P | < 1, and

U 2P.\'"*
(=) <1
n

- T’ o~
(kozfr - anz) vz ™

(lé)

(13)

Realizing the fact that & = a, is used for the calculation
of Ry in (8), we invoke the following approximations for
I' and v defined in (10) and (11):

[+

2
I~ —i(kde — Bma) 2|1 — — 5 14
t(kePer — Bma?) [1 2 (htey — mnz):, (14)

YR _'1‘.(]‘702 - 6mn2) 12,

Then the Wiener-Hopf kernel G(«) in (9) becqmes

(15)
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G(a) = {i/[(k02 — Bua?) 12

(k02 - an2) 12 >:|} M(a,l)
(k02€r - ﬂmn2) 12 M(a70) '

b (1 + e (16)

In the preceding, we have used the notation

M(ae) =1 —cexp {z?(koze, — Bua?) 12

2w ] o

where

¢ = 1 — e[ (kob/nm)?(1 — &) + 172
1+ ért(kob/nw)z(l — Gr) + 1]1/2 .

The factorization of M (a,1) was discussed by Vainshtein
[6] and M (a,c) by the authors [9]. The results are

M (aml) =~ (87Pn) 2 exp [—0.824(1 — @) (xPn) 1]
(19)

(18)

1/2
g=1 !

M (ame) = (1 — ¢)P2 exp [(1 — 1) (Pw)'2 i qc—q] i

(20)

Formulas in (19) and (20) are excellent approximations
forreale < 1 and P, < 0.25. A detailed discussion on the
accuracy of these formulas was given in [9]. However, in
the present analysis, we are also interested in situations
where ¢ is complex and | ¢ | & 1. In such cases, the series
in (20) converges slowly. For numerical calculation, a
better representation of M, (amc) is given by an integral
over a steepest descent path [9], namely,

In M, (otmye)
_ L/“’ In {1 — cexp[2xP,. — (£/2)7}
C2mi)_y, t — an(b/ko) 2 exp (in/4)

Substituting (13)—(20) and (21) into (8), after simplifi-
cation, we obtain the desired expression for the reflection
coefficient for the TM,,,® mode:

Run = (—1) exp [i(4rPm) (1 + )0.824g,].

Here we have two expressions for go. Forreal ¢ < 1, we use

dt. (21)

(22)

1 ® et
0.824 ()12 )2 ¢r

g=1

go=1+ (23)

For complex ¢, we use

I O SO . ~
gJo = 1 + 0.824(41I'Pm)1/2 [U(C;Pm) 2 In (1 C)]
(24)
where



FONG AND LEE: DIELECTRIC STRIP WAVEGUIDE FOR IC’S

1 — exp [27Pn + In[e/(1 ~ ¢)12] — 2/27}
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1 r*In
Uiepn) = o [

The formula in (22) is valid under the assumptions 1) and
2). For the special case where the dielectric is absent
(e = 1), go reduces to unity. Thus go may be considered
the filling factor accounting for the dielectric loading.

With the reflection coefficient R... found in the preceding,
and with the aid of the dispersion relation given in (3)
and (6), P, may be written as

m?

Po = 4T (27n)2(a/b) + (1 + 4)0.824go

For given waveguide parameters (koa,kob,e;) and given
mode index (m,n), we may calculate the complex number
P, from (25). It should be noted that for real ¢ < 1,
go given in (23) is independent of P,,, and (25) determines
P, explicitly. For complex c, go is a funetion of P,, and
P, must be solved by iteration. The propagation constants
(@m,Bmn) along (z,2) directions follow from (12) and (13)
or equivalently

(25)

. [ 77% ™

e /

= i [Pa(2n + P (26)
Brn w(n 4+ Pn)\2

ko [e’ B ( Feob >] (@D

where B,. is a complex number, and its small positive
imaginary part accounts for the radiation loss at the open
ends ¢ = +a.

IV. RESULTS FOR TE®

The analysis of TE® modes follows exactly the same
procedures as those for TM® modes presented in Sections
IT and III. In the following, we shall only summarize the
final results. The field components of TE® are derivable
from scalar potential J as follows:

-
TE®: Ezz% Hrzf_ 9%
0z wi 0 Y
. [ 02 -
B, =0 H, = — (»— + k&e,) 7
wp \dy?
a ;o
g=-% gt (28)
a9z wu 0y 0z
For the TE... mode, ¥ takes the form of
~ [cos dma e _ m = 1,3,5.--
wmn - sin ? Y exp (Zﬁmnz)
sin Gm m = 2,4,6--
(29)

The propagation constants (&m,8m») again can be computed
from (23)~(26), except that ¢ should be replaced by ¢, and

dt.

t — (4xPn) V2 exp (ir/4)

[(kb/nr)2(1 ~ &) + 12 — 1
Clkob/nm)?(1 — &) + 12417

(30)

6:

, Since &, is small, the dominant components of the TE®

mode are (E,,H,,H.,).
V. NUMERICAL RESULTS AND DISCUSSION

In numerical calculations, the complex constants P,
are solved from (25) by means of iteration as described
in the following. Using an initial value of g, generated by
(23), a first order P, is calculated from (25), and an
improved g from (24). Substitute the improved gy in
(25), we have a second order P,. The procedure repeats
until the variation of P,, becomes less than a preset error
criterion. Typically, this procedure yields a variation in
P, within 0.1 percent by only two to six iterations.

In Figs. 3(a)—6(a), the calculated propagation constant
Re Bumn from (27) is plotted as functions of b/Xo for four
lowest order TM,.,® and TE,,,® modes with aspect ratio
(a/b) =1 and 2, for ¢ = 11.8 (high resistivity silicon)
and e, = 3.78 (fuzed quartz). It is observed that the strip
guide analyzed in the present paper has dispersion charac-
teristics very similar to those of the dielectric guide [12],
[137].

1) The separation between modes decreases as the
aspect ratio (a¢/b) or dielectric constant e, increases.

2) TMum.® and TE,.,,® have practically the same prop-
agation constants Re Bm,. The reason that the presence
of the dielectric loading in our study does not remove this
degeneracy is because, for the transverse resonance condi-
tion to “satisfy, P, has to be small, meaning that the
incident plane wave, the first term of (4) at y = b in
Fig. 1, is nearly perpendicular to the dielectric interface
(i.e.,, normal incidence). In which case, it is known that
the refraction at the dielectric interface is independent of
polarization.

A striking difference between the present analysis and
those for optical and microwave open guides is that we
are able to calculate the attenuation constant Im Bua.
For an open structure shown in Fig. 1, even under ideal
conditions (lossless dielectric and conductor), the EM
energy cannot be confined perfectly due to the radiation
loss caused by diffraction at (2 = =4=a,y = b). This loss
is reflected in the positive imaginary part of Bm.. We have
calculated Im B, from (27) and the results are given in
Figs. 3(b)-6(b). The following observations can be made.

1) The radiation loss decreases as the aspect ratio (a/b)
&, Increases.

2) The radiation loss increases as Re 8,.. decreases. At
Re Bmn = ko, the major portion of the modal energy is no
longer confined in the waveguide and the radiation loss
increases sharply.

3) The lowest radiation loss is associated with the mode
which has the smallest transverse propagation constant
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am [6], [11]. As b/)\o increases, the smaller a,, come from
modes with higher indices. Consequently, the attenuation
constant of a lower indexed mode may cross over that of
a higher index.

4) Figs: 5(b) and 6(b) also manifest the competing
effects of dielectric loading and edge diffraction. For wave-
guides with relatively high dielectric constants, the modal
fields are quite confined due to the dielectri¢ loading and
the edge diffraction is less predominant. However, as the
dielectric constant decreases, the edge diffraction becomes
the predominating mechanism responsible for radiation
loss. Thus, for certain modes, such as the TM; .® mode,
the diffraction loss is at a minimum for n = 2 at b/h &
0.6 [Figs. 5(b) and 6(b)] because of an =0, and the
lowest diffraction loss is associated with the mode just
slightly above cutoff. Either below or above this b/\y, the
loss increases owing to the critical diffraction at the open
ends.

It should also be mentioned that in computing the
propagation constants and attenuation constants for ko &
Bmn, the approximation as defined by (15) is no longer
valid. Instead, one should use

v — ik — Bmil — (x/b)2nP, 2. (31
Consequently,
1 — e :
o(Pn) = :,g’ for TM,® modes  (32)
E(Pm) _e-1 ,  for TE..® modes (33)
Q+1
where

Q = [(kab/nm)(1 — &) + 1 — 2P, .

Therefore, for ko & Bmn, both ¢ and ¢ become functions of
P, and g; can only be obtained by iteration as previously
described. )

Transverse field distribution for different modes may be
calculated from (1) and (2) for TM® and (29) for TE®,
Such distributions along the z direction are presented in
Figs. 710 for TM® modes. Field distributions for TE®
modes are not shown because they are similar to the TM®
modes owing to the degeneracy in Re ... It is seen that the
field distributions in the strip guide are similar to those of
laser resonators [6], [9]. The nonzero value of the field at
x = =a is related to the radiation loss, the higher the
field value generally results a higher radiation loss. This
observation may be verified, for example, by comparing
Fig. 8 (| f(a) | = 0.29, Tm B = 7 X 10~%k, for a/b = 1)
and Fig. 10 (| f(a) | & 0.43, Im 8u ~ 10~%k, for a/b = 1).

In addition to the diffraction loss discussed above,
another dominant loss mechanism comes from the finite
conductivity of the guide walls. To obtain a first order
approximation of the latter loss, let us assume that the
conductivity of the guide walls is sufficiently high at the
frequency range of interest. Thus the field distributions
are not significantly altered by the presence of the ohmic
loss. In which case, the complex propagation constant due
to ohmic loss can be written as
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$ dz (34)

)6ohm ic =

where

® =4 E X H*dS

d<I> _R
f|Hm| dI:

B, = (wno/20)Y? is the surface resistance due to finite
conductivity of the metallic strip and ground plane. Hap,
in a first order approximation, are set equal to the non-
dissipative magnetic field components tangential to the
guide periphery. The line integral with respect to dl ex-
tends over the metallic guide periphery and the surface
integral extends over the transverse waveguide cross sec-
tion. Following from (1), (7), (28), and (29), after sim-
plification one obtains the following for TM,»® modes:
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Bon 7o) (07N f(a ) (36)
where
an? — Bma? Sin 20,0
1 + <_1> amz + ,anz 2ama
f(an,Bmn) = (37
sin 2ama

. 1— (—1)m
(=D 20ma
For propagating modes not close to cutoff, or Bmn > ke,

we have am? << Bma? and f(om,Bms) =~ 1. Thus the ohmic
loss can be readily calculated once Bn../ko is known. As a
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numerical example, let us consider the case with e, = 11.8,
b/n = 0.3, and a¢/b = 2.0. From Fig. 3, we have Bnun/ko =
2.98 + 13.94 X 1073. If we choose a frequency of 60 GHz
and the metal to be copper with ¢ = 4.0 X 10° mho/cm,
the surface resistance is B, = 7.7 X 102 © and Bohmic =
1.09 X 102 Np/em. If this is compared with the radiation
loss Im Bmn = 3.94 X 103k = 4.95 X 10~2 Np/cm, we
conclude, for this case, the dominant loss factor is from
radiation with the conduction loss amounts to about 20
percent of the radiation loss. The high radiation loss may
provide a plausible explanation of the fact that the meas-
ured guided wavelength for dielectric waveguide at low
aspect ratio does not agree with existing theoretical
predictions [14].

VI. CONCLUSION

A planar dielectric strip waveguide operating at milli-
meter-wave has dispersion characteristics similar to those
of a dielectric waveguide, but the strip waveguide is more
easily fabricated and integrated with other components.
The radiation loss at the open ends of the guide dominates
over the conduction loss for copper walls, and therefore is
an important factor in the design of a strip guide. Though
the discussion in this paper has been focused on the milli-
meter-wave, we believe the strip waveguide can also be
used at optical frequencies. Proper metallization similar to
that used in an optical mirror, however, may be necessary
to minimize the conduction loss.
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